
QoS Adaptation in Service-Oriented Grids

Rashid Al-Ali
�
, Abdelhakim Hafid

�
, Omer F. Rana

�
and David W. Walker

�
�
Department of Computer Science

Cardiff University, UK�
Rashid,O.F.Rana,David.W.Walker�@cs.cardiff.ac.uk�

Telcordia Technologies, Inc.
Red Bank, NJ, USA

hakim@research.telcordia.com

Abstract

Some applications utilizing Grid computing infrastructure require the simultaneous allocation of resources, such
as compute servers, networks, memory, disk storage and other specialized resources. Collaborative working and
visualization is one example of such applications. In this context, Quality of Service (QoS) is related to Grid services,
and not just to the network connecting these services. With the emerging interest in service-oriented Grids, resources
may be advertised and traded as services based on a Service Level Agreement (SLA). Such a SLA must include both
general and technical specifications, including pricing policy and properties of the resources required to execute the
service – to ensure QoS requirements are satisfied. A QoS adaptation algorithm is presented to enable the dynamic
adjustment of behavior of an application based on changes inthe pre-defined SLA. The approach is particularly useful
if workload or network traffic changes in unpredictable waysduring an active session. The proposed QoS adaptation
scheme is used to compensate for QoS degradation and optimize resource utilization, by increasing the number of
requests managed over a particular time.

1 Introduction and Related Works

Quality of service management has been explored in var-
ious contexts, particularly for computer networks [17]
and multimedia applications [4]; network QoS and end-
system QoS, such as memory and CPU. QoS manage-
ment has also been explored in the context of Grid
computing. Foster et al. [9] propose a framework for
QoS in Grid computing, called the Globus Architecture
for Reservation and Allocation (GARA), which enables
programmers and users to specify and manage end-to-
end QoS for Grid-based applications. It also provides
a uniform mechanism for making QoS reservations for
different types of Grid resources, such as processors,
networks and storage devices. QoS management cov-
ers a range of different activities, from resource selection
and allocation through to resource release. Regardless of
the context, a QoS management system should address
the following needs:

� Specifying QoS requirements.� Mapping QoS requirements to resource capabili-
ties.� Negotiating QoS with resource owners – where a
requirement cannot be exactly met.� Establishing SLAs with clients.� Reserving and allocating resources.

� Monitoring parameters associated with a QoS ses-
sion.� Adapting to varying resource quality characteris-
tics.� Terminating QoS sessions.

The G-QoSM framework [2] builds on the Open Grid
Service Architecture (OGSA) [10], and aims to address
the above requirements. The term ‘service’ in ‘Grid
service’ refers to a software entity that offers a partic-
ular capability and is network addressable. In the G-
QoSM context, QoS can be viewed as providing assur-
ance on a set of quantitative characteristics – such as
packet loss, and qualitative characteristics – such as reli-
ability, that are necessary to execute a Grid service. The
QoS adaptation mechanism outlined here provides mid-
dleware that communicates with the Globus toolkit [16]
and with network managers. The middleware enables
service providers to adjust their service delivery prop-
erties based on changes in the network – for example,
new services added or removed, and for clients to iden-
tify their service demand constraints. An underlying as-
sumption is that a Grid environment contains users with
different service requirements – i.e. users who are will-
ing to pay different amounts to access Grid services.
Similarly, resource providers must be able to distinguish
between the different classes of such users, and be able
to alter their provision costs.

QoS adaptation techniques have been successfully
used in multimedia applications over public and private
networks, as discussed in [12] and [17]. We extend
these approaches to support service-oriented Grids – re-
quiring more generic techniques than those available for
multimedia-based applications. For example, although
issues such as frame-rate or packet-jitter (within a mul-
timedia application) may be easily quantified, it is more
difficult to do so in the context of Grid-based applica-
tions. There is thus a need to annotate Grid services
with QoS related data, and to subsequently monitor con-
formance to these metrics. Generally QoS adaptation
for applications, executing over different resource types,
needs a complex approach to maintain an adequate co-
ordination between such diverse resources. Optimiza-
tion heuristics and an adaptation algorithm are proposed
to achieve this.

1.1 Related Works

QoS adaptation can be defined as‘the alteration of an
application’s behavior or interface in response to ar-
bitrary context changes’ [14]. It has been explored in
various contexts, such as communication networks, dis-
tributed multimedia applications, real-time systems and
Web interfaces (browsers). For example, Mobiware –
developed at Columbia University [17], is a toolkit that
supports adaptation at the network level. Mobiware pro-
vides programmable network objects that can be manip-
ulated to provide applications with their desired QoS.
Applications must state their QoS requirements using
an Application Program Interface (API), in the form of
a utility function and an adaptation policy. The util-
ity function expresses the desired application require-
ments with different levels of network bandwidth, while
the adaptation policy determines how the applications’
bandwidth allocation should vary as resource availabil-
ity changes. This work primarily focuses on network
QoS.

Hafid et al. [13] designed and implemented a QoS
manager responsible for undertaking negotiation and
adaptation in the context of distributed multimedia ap-
plications. Based on a user profile, the QoS manager
considers possible system configurations, calls system
offers, and selects an optimal one – called a user offer.
During playback of a multimedia document, if the net-
work or the server becomes congested, thereby lower-
ing presentation quality, the QoS manager dynamically
considers another system configuration from the list of
system offers. If an alternate system offer is selected
and the required resources reserved, the QoS manager

then automatically changes to the new system offer –
demonstrating adaptive behavior. This work is concep-
tually similar to that presented here, with one exception.
In [13] the list of system offers is generated by the QoS
manager based on the user profile; in G-QoSM the client
explicitly states the range of acceptable qualities, and the
system automatically selects a different quality when the
best one cannot be supported.

Chu et al. [6] designed and implemented a Soft Real-
time (SRT) system for multimedia applications. SRT
supports multiple CPU service classes for real-time pro-
cesses based on the usage pattern of these processes.
They use the notion of ‘contracts’ to specify the CPU
service class together with a parameter used to reserve
CPU time. As the processing time per frame changes
dynamically for some processes, the contract parameters
are adjusted accordingly to reflect the change in proces-
sor usage pattern. SRT provides asystem-initiated adap-
tation that can adjust contract parameters for the real-
time processes based on their actual processor usage.
One noticeable feature of this adaptation is the ability
to reserve just enough CPU time to execute the required
processes. This adaptation technique is limited to real-
time processes whilst the approach presented in this pa-
per is more generic, and may be applied to various types
of resources.

In the context of Grid computing, Foster et al. [11]
designed and implemented a prototype adaptive control
system based on: (i)actuators that permit online con-
trol, (ii) sensors that permit monitoring of resource allo-
cation and (iii)a decision procedure that allows entities
to respond to sensor information by invoking actuators.
The prototype was implemented with a particular em-
phasis on network resource usage. For example, a loss
rate sensor might acquire information from a network
edge router. The decision procedure then obtains infor-
mation from the loss rate sensor and adapts the network
reservation using the GARACreate/Modify reservation
request via a reservation actuator. This work is similar
to that presented in this paper in the sense that both use
GARA as the underlying resource manager to create and
modify reservations. However the decision procedure
used in [11] is different to the adaptive system presented
here, and their work is only concerned with network re-
sources.

In the context of resource management adaptation,
Cardei et al. [5] presented a Real-Time Adaptive Re-
source Manager (RTARM), developed at the Honeywell
Technology Center. RTARM is a general middleware
architecture/framework for adaptive management of In-
tegrated Services, and is targeted at real-time mission-

critical distributed applications. RTARM recognizes
three situations where the QoS for an application may
change: (i) QoS reduction when a new application be-
gins, (ii) QoS expansion/improvement when an appli-
cation terminates and releases resources, and (iii) feed-
back adaptation. Situations (i) and (ii) impose con-
tract changes due to adaptation, and are similar to the
re-negotiation ideas presented here. Feedback adapta-
tion, conversely, does not impose contract changes but
operates as a closed-loop control system, monitoring
the delivered QoS and using the difference between de-
livered and desired QoS parameters to adapt applica-
tion behavior. The feedback adaptation aims to utilize
‘just enough’ resources, even though the contract spec-
ifies more resources or the application uses fewer re-
sources. The adaptive approach presented in this paper
aims to allocate resources based on an SLA specifica-
tion, and under-utilized adaptation is not supported. An-
other difference is that in a contract change, or QoS re-
negotiation during a QoS session, the pricing component
– responsible for implementing a cost model to price re-
sources – plays a major role in proposing new QoS of-
fers, as in the G-QoSM framework where services are
traded against cost.

2 G-QoSM Background

The Grid-QoS management framework (G-QoSM) [2]
provides three main functions: 1) support for resource
and service discovery, based on QoS properties; 2)
provision for supporting QoS guarantees at applica-
tion, middleware and network level, and management of
SLAs to enforce these QoS parameters; and 3) provision
of QoS management of allocated resources. G-QoSM
delivers three QoS levels: ‘guaranteed’ QoS, ‘controlled
load’ QoS and ‘best effort’ QoS (see section 5.1).

2.1 G-QoSM System Architecture

As illustrated in figure 1, G-QoSM consists of three
main components: 1) an Application QoS bro-
ker/manager (AQoS) – for each deployed application; 2)
a middleware Resource Manager (RM); and 3) a Net-
work Resource Manager (NRM). AQoS is the main fo-
cus of the system presented here, and is required to inter-
act with clients, RMs, NRMs and neighboring AQoSs.
The AQoS also negotiates SLAs with clients and com-
municates parameters associated with an SLA to the cor-
responding resource manager. The AQoS is responsible
for ensuring SLA conformance to allocated resources,
and provides support for parameter adaptation when a

AQoS

S1 S2 Sn

AQoS

S1 S2 Sn

AQoS

S1 S2 Sn

AQoS

S1 S2 Sn

Domain2Domain1

RM

User2User1User2User1

Interconnections between components within the same domain
Interconnections between components within different domains

RM

AQoS

Resource manager

ServiceS

Application QoS management layer

NRMNRM

Network resource managerNRM

RM

Figure 1: The G-QoSM Architecture

SLA violation is detected. The middleware resource
manager (RM) exists within a given administrative do-
main. A domain can be defined via an IP mask or as an
administrative domain in Globus, for instance, and con-
tains a set of services over which the RM has adminis-
trative and configuration control. A RM, in this context,
is considered as a combination of the Globus Resource
Allocation Manager (GRAM) [8] and a Universal De-
scription and Discovery Integration (UDDI) registry [1].
Globus is used to manage service execution, and UDDI
to provide a registry and discovery system – to enable
discovery of services based on their capability and QoS
attributes. To support discovery of services based on
their properties, the UDDI registry has been extended
as UDDIe [19] – service users can now also specify
particular service properties, such as QoS parameters,
with which services are registered, and based on which
services can subsequently be discovered. The Network
Resource Manager (NRM) is conceptually a Bandwidth
Broker (BB) (a concept described in [21]), and man-
ages QoS parameters within a given domain based on
the SLAs agreed to in that domain. The NRM is also
responsible for managing inter-domain communication
with NRMs in neighboring domains, in order to coordi-
nate SLAs across domain boundaries. The NRM may
communicate with local monitoring tools to determine
the state of the network and its current configuration.

An operation scenario of G-QoSM is illustrated in fig-
ure 2, outlining interactions between the various system
components. All interactions are encoded as XML mes-
sages. A client contacts the AQoS broker with its ser-
vice information and QoS requirements, such as reser-
vation time and budget constraints. The AQoS queries
the UDDIe registry for services with the specified QoS
capabilities. The UDDIe registry sends a list of match-

User AQoS RM NRM Serv

QuerySerives()

RequestService()

Resources()
QueryNetwork

QueryComputation
Resources()

SLAnegotiation()

Allocation()
Resource

Resource
Allocation()

Invocation()
Service

QoSmanagement()

QoSmanagement()

Figure 2: A Sequence Diagram Showing the Interaction
between Various G-QoSM Components

QoS Specification

QoS Mapping

QoS Negotiation

Resource Reservation

Accounting

Resource Allocation

QoS Monitoring

QoS Renegotiation

QoS Adaptation

QoS Accounting

Clearing PhaseQoS Terminiation

Active Phase

Establishment Phase

Figure 3: QoS Management Functions

ing services (if any) to the AQoS. The AQoS then con-
tacts the corresponding resource managers, namely the
NRM and Globus GRAM, to verify resource availability
with the required QoS levels. This concludes the discov-
ery phase. The AQoS and the client subsequently en-
ter a negotiation phase aimed at reaching mutual agree-
ment on resource QoS levels and establishing a Service
Level Agreement (SLA). Once the SLA is established,
its parameters are relayed to the corresponding resource
managers, namely Globus GRAM and NRM, to facili-
tate resource allocation. Then Globus GRAM invokes
the service for execution – concluding the second phase,
namely resource QoS specification and SLA establish-
ment. Once resources have been allocated and the ser-
vice invoked for execution, the QoS management phase
is initiated. In this phase, the AQoS queries and moni-
tors status information on allocated resources to ensure
SLA conformance, and utilises adaptation techniques to
prevent SLA violation. These techniques are only ap-
plicable for ‘guaranteed’ QoS and ‘controlled load’ QoS
levels, and result in some of the constraints being re-
evaluated or an alert being sent to the client service.

3 QoS Management

A QoS session consists of three main phases: i) the Es-
tablishment phase, ii) the Active phase and iii) the Clear-
ing phase [12]. Each of these phases have QoS func-
tions as depicted in figure 3. In G-QoSM, during the
Establishment phase, a client states the QoS specifica-
tion and the AQoS broker undertakes the service and re-
source discovery, based on these QoS properties, in ne-
gotiation with the client [3]. During the Active phase,
additional activities such as QoS monitoring, adaptation
and possibly re-negotiation make take place. The Clear-
ing phase is when the QoS session is terminated – due to
resource reservation expiration, SLA violation or a Grid
service completion, and resources are freed for use by
other clients.

3.1 Resource Reservation and Allocation

Resources are temporarily reserved during the discov-
ery phase until the client and the AQoS conclude a
SLA. Once the proposed SLA is approved by the
client/application, the AQoS establishes a final SLA
document and saves it in the SLA repository for sub-
sequent reference. The SLA portion that describes the
resources is relayed to the corresponding resource man-
agers (RM for computation resources and NRM for net-
work resources) and the resource reservation status is
changed from ‘temporarily reserved’ to that in the SLA.
Table 1 shows a sample SLA portion relayed to the re-
source managers.

<Service-Specific>
...

<CPU-QoS>4 CPU</CPU-QoS>
<Memory-QoS>64MB</Memory-QoS>
<Network_QoS>

<Source_IP> 192.200.168.33 </Source_IP>
<Dest_IP> 135.200.50.101 </Dest_IP>
<Bandwidth> 10 Mbps </Bandwidth>
<Packet_Loss> LessThan 10% </Packet_Loss>

</Network_QoS>
</Service-Specific>

Table 1: Sample SLA Specification

The Allocation manager(Alloc-M) within the AQoS also
receives its copy of the resource configuration. This
triggers resource managers to identify if resource reser-
vations can be made based on the status described in
the SLA. A Reservation System(RS) has been designed
and implemented that takes requests for resources, with
specified start and end times, from the AQoS along with
resource specific parameters. An example of a RM, in

the case of computational (CPU) resources is the GARA
library [9][18], which is an application level interface to
underlying resource managers, such as the Dynamic Soft
Real-Time scheduler (DSRT) [6]. Table 2 shows sample
primitives from the GARA API.

globus_gara_reservation_create(gatekeeper,req_rsl,
&reserve_handle)

globus_gara_reservation_bind(reserve_handle,
&bind_param)

globus_gara_reservation_unbind(reserve_handle)
globus_gara_reservation_cancel(reserve_handle)

Table 2: Sample Primitives Provided by the GARA API

In the context of GARA, resource specifications are
described in Globus Resource Specification Language
(RSL) [16] and used as the input parameters for reserva-
tion purposes. A successful reservation returns a refer-
ence called aReservation Handler. Subsequently reser-
vations need to be claimed before they can be used. For
example, when a Grid service is launched, its process
binds to a previously-made reservation using GARA
primitive globus-gara-reservationbind(...). This primi-
tive binds a process to individual reservations by provid-
ing the reservation reference and the parameters needed
to claim the reservation; in the case of computational re-
sources, the process ID of the launched process is the
only parameter required. Based on the primitives pro-
vided by GARA API and GARA reservation concepts,
the Reservation System (RS) within the AQoS broker
implements reservation as follows:

� During the discovery phase, resources are reserved
on a temporary basis until the proposed SLA is ap-
proved by the client/application.

� The RS generates the appropriate resource specifi-
cation RSL string, which describes the resources,
and submits it to GARA for reservation.

� If reservation succeeds, a reservation reference is
sent to the AQoS broker.

� RS waits for a pre-defined period of time for the
corresponding reservation confirmation from the
AQoS.

� If the RS does not receive such confirmation within
the pre-defined period of time, it instructs GARA
to cancel the reservation. Otherwise, the resources
are committed.

� When the Grid service is ready to use the reserva-
tion, it must claim the reservation, and initiates a
bind call to GARA with its (process) ID; this call
will associate the previously made reservation with
the reserved resources.

3.2 Resource Monitoring

The QoS monitoring system keeps track of Grid re-
sources and provides information on resources, such
as resource availability and utilization, to be used for
adaptation purposes. QoS monitoring is an essential re-
quirement for SLA conformance and verification. In
the AQoS broker, the verification can be accomplished
by a SLA conformance test on an explicit request by
the client/application. The SLA verification(SLA-Verif)
component – part of the AQoS, sends a request for QoS
levels to the various resource managers. The reply is
sent back to the client/application and is used to compare
the actual measured QoS levels to the previously agreed
QoS (in the SLA). Table 3 shows an example reply (en-
coded in XML) in response to a network QoS parame-
ters request. The AQoS does not constantly monitor the
QoS levels of the allocated resources; rather it relies on
the SLA-Verif component. TheSLA-Verif obtains QoS
levels from both the NRM, for network resources, and
the Globus information service (MDS) [7] for CPU QoS.
TheSLA-Verif also generates a notification of any QoS
degradation of an agreed on QoS. In the case of QoS
degradation the underlying resource manager attempts
to rectify the problem by applying adaptation techniques
at the resource management level, as outlined in [6]. If
these adaptation techniques do not eliminate QoS degra-
dation, then the AQoS applies adaptation techniques (see
section 5) at the AQoS level to compensate if possible.
TheSLA-Verif uses the Java CoG Kit [22] MDS APIs to
periodically retrieve QoS data. When the network QoS
degrades, the Network Resource Manager (NRM) noti-
fies theSLA-Verif system of such degradation.

<QoS_Levels>
<SLA-ID> 1055 </SLA-ID>
<Measured_Network_QoS>

<Source_IP>192.200.168.33</Source_IP>
<Dest_IP>135.200.50.101</Dest_IP>
<Bandwidth>9.5 Mbps</Bandwidth>
<Packet_Loss>LessThan 10%</Packet_Loss>
<Delay>10ms</Delay>

</Measured_Network_QoS>
...

</QoS_Levels>

Table 3: An XML message after a SLA conformance
test showing measured network QoS levels.

4 Adaptation Scenarios

QoS adaptation is a key function of QoS management
during the Active phase of a session. The response of the
AQoS should result in either (a) restoring the agreed on

1

2

3

4

5

1

Globus: GRAM, MDS, GARA

RM

Service

AQoS Broker

Adaptive System

Client

Pool of computation resources, i.e. CPU, memory

Figure 4: An interaction between Client, AQoS Broker,
RM and the Grid Service through the following QoS
management phases: 1) QoS negotiation and SLA estab-
lishment, 2) resource allocation, 3) resource monitoring,
4) QoS adaptation, and 5) QoS re-negotiation.

QoS (in SLA); (b) re-negotiating QoS as per the SLA;
or (c) terminating the service being delivered due to a
major QoS degradation. Figure 4 shows the interac-
tions between a client, AQoS, RM and Grid Services
through different phases of QoS management including
QoS adaptation. Three scenarios in the context of the
G-QoSM framework, where adaptation is required are
described.

Scenario 1: New Service Request : In this scenario
a new service request is received but there are insuffi-
cient resources to accommodate the request. Adapta-
tion can be used to free resources to accommodate the
new request by adjusting resource allocations of active
services while still satisfying their SLAs. The adapta-
tion function queries the AQoS broker about the list of
currently active services. The list is filtered to include
only those services whose SLAs indicate willingness to
accept a degraded QoS and/or termination of service to
support compensation.

Scenario 2: Service Termination : In this scenario a
service completes successfully, and its resources are re-
leased. Adaptation can be used to increase resources al-
location for a selected number of existing services while
still satisfying their SLAs; the objective is to use the re-
leased resources and thus increase the profits of the ser-
vice provider. This can be realized by (a) upgrading the
QoS of existing services that had their QoS reduced; or
(b) upgrading the QoS of existing services that are not
currently receiving the ‘best’ QoS, as defined in their
SLAs; or (c) presenting promotion offers to existing ser-
vices for upgrading their QoS to attract additional re-
source requests.

Scenario 3: QoS Degradation : This scenario is the
classical QoS adaptation situation where QoS falls be-
low the specified QoS level (i.e. minimum acceptable
QoS) in the SLA. The QoS degradation is detected either
by the resource monitoring system or by an explicit no-
tification from the underlying resource manager. Adap-
tation is used, if possible, to restore the degraded QoS to
an acceptable QoS as defined in the SLA.

5 QoS Adaptation Scheme

The QoS adaptation scheme to realize the scenarios de-
scribed in section 4 are outlined. Section 5.1 describes
the QoS classes supported by the scheme; these classes
correspond to the ones defined in the G-QoSM frame-
work [2]. Section 5.2 discusses SLA and how it is used
by the adaptation scheme. Section 5.3 introduces an
optimization heuristic used by the adaptation scheme
to adjust resource allocation to optimize resource uti-
lization. Section 5.4 presents the adaptation algorithm;
based on reserving extra resources for guaranteed ser-
vices. Finally, an example of the operation of the adap-
tation scheme is presented in Section 5.6.

5.1 QoS Classes

The G-QoSM framework adopts a service model which
classifies the service delivery into 3 distinct classes: (1)
‘guaranteed’ service [20]; (2) ‘controlled load’ service
[15]; and (3) ‘best effort’ service. The ‘guaranteed’
service provides QoS based on pre-defined constraints
identified by the user, and agreed on by the provider
within a SLA. These constants are specified using pre-
agreed parameters, and must be supported by the Grid
service provider. In this type of service, QoS parameters
are enforced and monitored; the service provider is com-
mitted to deliver the service with the exact QoS spec-
ification described in the SLA. In the ‘controlled load’
service, users state their QoS requirements based on pa-
rameter ranges; the service provider must now be able to
offer QoS within the specified range. In the ‘best effort’
service, there is no SLA associated with the service re-
quest – which corresponds to the default case where no
QoS provision is taking place. In this class, any suitable
resources found are returned to the user.

5.2 SLA and QoS Adaptation

Choosing the appropriate adaptation strategy and its
constituent parameters relies on terms that have been
agreed on, in advance, during SLA establishment. These
involve, for example, acceptable levels of resource qual-
ity, inter-dependencies between resources and SLA vio-
lation penalties.

There are 2 essential SLA elements that must be
agreed on during QoS negotiation, and which impact on
adaptation decisions: (1) based on the selected class of
service, a level of total acceptable quality must be es-
tablished. For example, in the case of ‘controlled load’
class the user would specify the range within which an
acceptable QoS level must fall. (2) Only in the ‘con-
trolled load’ class is there an optional element related to
‘promotion offers’ during service execution. The QoS
negotiation phase, when a SLA is established, plays a
major role in constraining the adaptation strategy, hav-
ing control of the parameters that execute the adaptive
functions. Table 4 is an example of a SLA generated
from a negotiation process.

<Service_SLA>
...........

<QoS_Specification>
...........

</QoS_Specification>
<QoS_Class> Controlled-load </QoS_Class>
<Adaptation_Options>

<Alternative_QoS>
<CPU> 55 nodes on Linux OS </CPU>
<Memory> 48 MB </Memory>
<Bandwidth> 45 Mbps </Bandwidth>

</Alternative_QoS>
<Promotion_Offer>Accept</Promotion_Offer>

</Adaptation_Options>
</Service_SLA>

Table 4: A sample negotiated SLA document encoded as
an XML message highlighting the adaptation strategy.

5.3 Resource Allocation Optimization

Within the G-QoSM framework there can be a num-
ber of different users, each requesting a particular QoS.
This quality level must be agreed on in the negotiated
SLA – consisting of the quality parameters required by
a user, along with other service management parame-
ters, such as service name, service class and duration.
If all the parameters associated with QoS are extracted
and expressed as set���, then��� � ������ � �������,
where each�� represents a different parameter of inter-
est (e.g. cache, primary memory, CPU capability and

bandwidth). One is now able to compare two different
��� sets, by comparing each element of the set; hence
if ���	 � ��	� � �����	�� and ���
 � ��
� � �����
��,
then one can compare�	� with �
� . Furthermore, QoS
parameter values�� may be recorded in the SLA in
two forms: (1) based on a parameter range; such that:�
 � �� � �	; where�	 is a better quality than�
; im-
plying that the user requires a minimum of�
 level of
quality, but it would be better, from the user’s point of
view, to receive an�	 level of quality, and (2) based on a
list – where the user states distinct values for a particular
QoS parameter, for example:�� � ���
���; where�,
 and� are integer numbers representing the acceptable
values for QoS parameter��. Each QoS�� has a corre-
sponding cost��1; where�� is a constant, related to the
pricing formula for the class of service assigned to this
user. The monetary cost for a particular QoS parameter
may be calculated as�������� � �� � ��, and, subse-
quently, the monetary cost of the QoS set for a particular
service may be calculated as:

������� ��������� �
��
���

��� � ���

Given the above assumptions, the optimization problem
can be defined as:

����� ���� � ���
��
���

�������� �����������

where� represents the total number of active services.
The AQoS implements this optimization by varying the
resource quality selection, based on supplied levels of
quality in the SLA, which aims to maximize overall
monetary profit, while maintaining the user’s acceptable
quality.

5.4 Adaptation Algorithm

Unlike the optimization heuristic, this adaptation algo-
rithm only operates on the ‘guaranteed’ and ‘best ef-
fort’ classes. As the ‘guaranteed’ class of user receives
the highest level of attention, it is important to pro-
vide them with extra assurances through adaptation ap-
proaches. The algorithm requires the system adminis-
trator to specify the total resource capacity specified for
the ‘guaranteed’ and ‘best effort’ users. The term ‘re-
source capacity’ encompasses CPU, network and stor-
age resources. The algorithm reserves an ‘adaptive ca-

1Although specified as a “cost”, these weighting parameters may
also have other semantic interpretations, such as priorityor user pref-
erence

pacity’, based on the specified rate of resource fail-
ure or congestion provided by the system administra-
tor. The algorithm also considers a minimum capacity
for ‘best effort’ clients, as determined by the system ad-
ministrator. These capacity allocations are dynamic in
that if the adaptive and/or guaranteed capacities are not
used, then the ‘best effort’ capacity compensates and
utilizes free resources, provided they are not currently
allocated. The Algorithm starts execution by invoking:
(a) theAllocate Guaranteed Resource or (b) theAllo-
cate Best Effort Resource function, as outlined in Algo-
rithm 1.

The proposed adaptation algorithm has the follow-
ing advantages: (a) Resources are never under-utilized
due to the dynamic property of the algorithm. The ex-
tra reserved capacity is used by ‘best effort’ users as
long as it is not needed by ‘guaranteed’ users; and (b) a
minimum resource capacity is allocated for ‘best effort’
users, therefore users with no SLAs can always make
use of the ‘best effort’ resources.

5.5 Adaptation Strategies of Grid Services

The adaptation scheme is based on the above algorithm,
and the resource allocation optimization described in
section 5.4 and section 5.3 respectively. The optimiza-
tion heuristic is executed periodically by the AQoS bro-
ker; if there is a considerable gain in terms of benefits
to the Grid Service provider, resources allocation is ac-
cordingly modified. On receipt of a request from a ‘guar-
anteed’ client, the adaptation algorithm (section 5.4) is
applied; if the request cannot be accommodated, the op-
timization heuristic is executed.

5.6 Example

An example to illustrate the operation of the proposed
adaptation scheme is presented here, with the empha-
sis on computation resources, such as CPUs. Assume
a group of scientists are about to conduct a simulation
experiment using Grid services and infrastructure. The
experiment will run at site A on an SGI multiproces-
sor machine with 64 CPU/processor nodes and 10 GB
of memory. The database, in which the required data
for the simulation resides, is located at site B. A second
group of scientists participating in the simulation exper-
iment are located at site C. The resources required for
this experiment are:

Algorithm 1 QoS adaptation
�: the total resource capacity
��: the ‘guaranteed QoS’ capacity
��: the adaptive capacity
��: the ‘best-effort QoS’ capacity
Then� � �� ��� ���
�

: set of ALL user
� � ���� ���������

: set of users of class ‘guaranteed’
� � ���� ���������

: set of users of class ‘best effort’
� �

���� ��������
���� �� � capacity required at time

�
by user� 	 �
��� �� � capacity required at time

�
by user� 	 �

� ��� be the guaranteed capacity with a SLA for user� 	 �

Available GuaranteedResource(g(u))
if �
�� � ��� � �� then

SLA guarantees to g(u) can be honored
end if

Adapt()
Net capacity����� � ����� ��
�� � ���
if ����� � � , (guarantees cannot be honored at time
‘t’) then�����
�� � ��� ������� from A to G������ ��� � ��
�� � ��� �������� from A to

B
end if

Allocate GuaranteedResource(c(u,t), g(u))
if

����� �� � � ��� then
���� �� capacity must be given

else if NOT AvailableGuaranteedResource(g(u))
then

Adapt; allocate c(u,t) capacity
else if

����� �� � � ��� then
only g(u) capacity is given
�����
��� � � ���
Allocate GuaranteedResource

������
��� �� ����
end if

Allocate Best Effort Resource(b(u,t))
if

��� �� ��� ���; (�� ��� � �� ���) then
allocate

��� ��
else

cannot allocate the required capacity
end if

� 622 Mbps communication link to connect site B
and site A.

� 45 Mbps communication link to connect site C and
site A.

� 10 processor nodes, 2 GB of memory and 15 GB of
disk space at site A.

The resources must be allocated over the duration of the
experiment –

��� �� ���. The SGI machine is config-
ured to provide 26 processor nodes to all Grid users,
with the rest dedicated for local processing. The Grid
system administrator partitions the 26 processor nodes
as:

�� � ��� �� � � and�� � �
processor nodes

� � �� � �� � �� = 15 + 6 + 5 = 26 processor
nodes

A composite SLA was negotiated with the AQoS based
on 3 sub-SLAs over the period

�� �� ��:����: network bandwidth of 622 Mbps from site B
to site A����: network bandwidth of 45 Mbps from site C to
site A����: 10 processor nodes, 2 GB of memory and 15
GB of disk space on the SGI machine at site A

The following measurements are recorded during the pe-
riod

��
through

��
. Note the subscripts ‘�’ and ‘�’ cor-

respond to������
�� and���� resource CPU nodes re-
spectively.

� At
��

to
��

the processor nodes allocation is as
follows:

��: � = 10, �= 5
��: � = 6, �= 0
��: � = 0, �= 5; adaptive capacity from��
point of view
��: � = 4, �= 1; adaptive capacity from��
point of view

� At
�	
��: � = 4, �= 11
��: � = 6, �= 0
��: � = 0, �= 5; �� point of view
��: � = 3, �= 2; �� point of view (‘best effort’
users use resources in an unpredicted pattern)

� At
��

: three processors from�� resource pool
become inaccessible, and therefore:�� � �

processor nodes. Also���� is due � allo-
cating � ������ � ������ � ���= 10 proces-
sors

AQoS
Broker

Tomcat Server

UDDIe AQoS has access to Resource Managers (RMs)

with the Globus environment

NETWORK

Client 1 Client 2

G−QoSM

Domain

Figure 5: G-QoSM Test-bed Architecture: Clients send
XML messages to the AQoS broker using SOAP over
HTTP. The AQoS and the UDDIe are server processes
running within a Tomcat application server. The AQoS
has control over the resource managers.

��: � = 14,�= (1); to be brought from�� when
is required.
��: � = 6, �= 0
��: � = 2, �= 3; �� point of view
��: � = 3, �= 0; �� point of view

� At
��

: the three inaccessible processors become ac-
cessible, and now:

��: � = 14, �= 1
��: � = 6, �= 0
��: � = 0, �= 5; �� point of view
��: � = 3, �= 2; �� point of view

� At
��

: ���� has completed its validity pe-
riod:

��: � = 4, �= 11
��: � = 6, �= 0
��: � = 0, �= 5; �� point of view
��: � = 3, �= 2; �� point of view

6 Current Implementation Status

The G-QoSM framework is a three phase project: (1)
investigation design and implementation of a discov-
ery system with QoS support, (2) investigation design
and implementation of a QoS broker, and (3) study of
domain-specific QoS requirements for an application
framework and integrating it with the G-QoSM. Cur-
rently phase 3 is being investigated.

Figure 6: A screenshot, showing activities undertaken
by the AQoS broker

The implementation test-bed is built on RedHat Linux
7.2 and the Globus toolkit v2.0. The programming tools
are: Java2 SDK Version 1.4.0, Java CoG kit, UDDIe
(an extended version of the UDDI) and the Tomcat ap-
plication server. A QoS broker (AQoS) which supports
the functions outlined in section 1 is implemented. The
developed QoS broker is integrated with the Dynamic
Soft Real-Time (DSRT) scheduler [6] as the computa-
tion (CPU) scheduler – which operates in a single pro-
cessor and multiprocessor system. GARA’s DSRT re-
source manager API is used to facilitate the interaction
between the QoS broker and the DSRT scheduler.

The overall architecture is depicted in Figure 5; a
client interface application starts at the client side; the
client application communicates with the AQoS broker
using SOAP messages over HTTP protocol. The AQoS
and the UDDIe are server processes and reside in the
Tomcat application server as servlets within a Globus-
managed environment. The AQoS communicates with
the DSRT scheduler through GARA’s DSRT manager
API for resource reservation and allocation.

Figures 6 and 7 are screen shots taken from the proto-
type implementation to demonstrate activities outlined
in the sequence diagram in Figure 2. Figure 7 is a
client interface screen – the client has to fill out the
service request message and send it to the AQoS
‘servlet’; the lower half of this screenshot shows the re-
sponse from the AQoS. In this case it is a service offer
based on the supplied QoS criteria for the desired ser-
vice. A client interface is used, primarily for demonstra-
tion purposes; however, in practice applications should

Figure 7: A client interface screenshot, showing the
client entered a ‘servicerequest’ and the AQoS broker
replied with a service offer

themselves generate theservice requestmessages
and contact a SOAP server to transmit messages. The
client interface screen has four options (on the right-
hand side): (a) requesting a service with QoS properties,
(b) accepting SLA offers, (c) rejecting SLA offers, or
(d) requesting an explicit SLA verification test. Figure
6 provides a screenshot of activities undertaken by the
QoS broker to accomplish the specified request, such as,
contacting the UDDIe registry, reserving resources and
computing the total service QoS cost. The system ad-
ministrator may also use this interface to see service of-
fers from the AQoS, and subsequent client approval or
rejection of the offer.

7 Conclusions

QoS management and QoS adaptation is defined in the
context of the G-QoSM framework. A generic adap-
tation model is outlined based on reserving extra re-

source capacity to guarantee resources for the ‘guaran-
teed’ class of users if there is resource failure or con-
gestion. The dynamic nature of this model allows un-
used resources to be more effectively utilized. The im-
plementation of the resource reservation and monitor-
ing features, as the underlying tools for the adaptation
functions, is also described. An optimization heuristic
to optimize resource utilization is proposed, which al-
lows the system to maximize monetary benefits to the
Grid service provider; with the basic concept being to
enable better resource allocation while satisfying pre-
agreed SLAs. The adaptation scheme aims to provide
the best possible resource quality within a dynamically
changing environment. As a future topic it is planned
to evaluate this adaptation technique in the context of a
particular Grid application.

Acknowledgement

We would like to acknowledge the work of Ali
ShaikhAli, of Cardiff University, for his implementation
of UDDIe – and the initial idea for this system from Vi-
jay Dialani of Southampton University, UK. We also ap-
preciate contributions from Jonathan Giddy of the Welsh
eScience Centre, especially for his comments on utiliz-
ing Globus in the G-QoSM framework.

References

[1] Universal description, discovery and integration of business for
the web. See Web site at: http://www.uddi.org.

[2] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail. G-QoSM:
Grid service discovery using QoS properties.Computing and In-
formatics Journal, Special Issue on Grid Computing, 21(4):363–
382, 2002.

[3] R. Al-Ali, A. ShaikhAli, O. Rana, and D. Walker. Supporting
QoS-based discovery in service-oriented grids. InProceedings
of IEEE Heterogeneous Computing Workshop (HCW’03), Nice,
France, 2003.

[4] G. Bochmann and A. Hafid. Some principles for quality of ser-
vice management. Technical report, Universite de Montreal,
1996.

[5] I. Cardei, R. Jha, M. Cardei, and A. Pavan. Hierarchical architec-
ture for real-time adaptive resource management. InIFIP/ACM
International Conference on Distributed Systems Platforms,
pages 415–434, 2000.

[6] H. Chu and K Nahrstedt. A cpu service classes for multimedia
applications. InIEEE Multimedia Systems ’99, 1999.

[7] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
infromation services for distributed resource sharing. InProc. of
the 10th IEEE High Performance Distributed Computing, pages
181–184, 2001.

[8] K. Czajkowski, I. Foster, C. Kesselman, et al. A resource
management architecture for metacomputing systems. InProc.
IPPS/SPDP 98 Workshop on Job Scheduling Strategies for Par-
allel Processing, pages 62–82, 1998.

[9] I. Foster, C. Kesselman, et al. A distributed resource man-
agement architecture that supports advance reservation and co-
allocation. InProceedings of the International Workshop on
Quality of Service, pages 27–36, 1999.

[10] I. Foster, C. Kesselman, et al. The physiology of the grid:an
open grid services architecture for distributed systems integra-
tion. Technical report, Argonne National Laboratory, Chicago,
January 2002.

[11] I. Foster, A. Roy, and V. Sander. A quality of service architecture
that combines resource reservation and application adaptation.
In Proceedings of the 8th International Workshop on Quality of
Service (IWQOS), pages 181–188, Pittsburgh, PA, June 2000.

[12] A. Hafid and G.Bochmann. Quality of service adaptation in dis-
tributed multimedia applications.ACM Springer-Verlag Multi-
media Systems Journal, 6(5):299–315, 1998.

[13] A. Hafid, G.Bochmann, and B. Kerherve. A quality of service
negotiation procedure for distributed multimedia presentational
applications. InHPDC ’96, pages 330–339, 1996.

[14] K. Henricksen and J. Indulska. Adapting the web interface: An
adaptive web browser. InSecond Australasian User Interface
Conference (AUIC’01), 2001.

[15] J.Wroclawski. Specification of the controlled-load network ele-
ment service. Internet Engineering Task Force, RFC 2211, 1997.

[16] Argonne National Laboratory. The globus project. See Web Site
at: http://www.globus.org/, Last visited: February 2003.

[17] A. Oguz et al. The mobiware toolkit: Programmable support
for adaptive mobile networking.IEEE Pesronal Communica-
tions Magazine, Special Issue on Adapting to Network and Client
Variability, 5(4), 1998.

[18] A. Roy. End-to-End Quality of Service for High-End Applica-
tions. PhD thesis, The University of Chicago, August 2001.

[19] A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker. UDDIe: An
extended registry for web services. InProceedings of Workshop
on Service Oriented Computing: Models, Architectures and Ap-
plications at SAINT 2003, IEEE CS Press, pages 85–90, Orlando
FL, USA, 2003.

[20] S. Shenker, C. Partridge, and R. Guerin. Specification of guar-
anteed quality of service. Internet Engineering Task Force, RFC
2212, 1997.

[21] B. Teitelbaum, S. Hares, L. Dunn, R. Neilson, R. Vishy Narayan,
and F. Reichmeyer. Internet2 qbone: Building a testbed for
differentiated services.IEEE Network, 13(5):8–17, September
1999.

[22] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A javacom-
modity grid kit. Concurrency and Computation: Practice and
Experience, 13(8-9):643–662, 2001.

